
Recognition and Classification of Figures
in PDF Documents

Mingyan Shao and Robert P. Futrelle

Northeastern University, Boston, MA 02115, USA
myshao, futrelle@ccs.neu.edu

Abstract. Graphics recognition for raster-based input discovers primitives such
as lines, arrowheads, and circles. This paper focuses on graphics recognition of
figures in vector-based PDF documents. The first stage consists of extracting the
graphic and text primitives corresponding to figures. An interpreter was con-
structed to translate PDF content into a set of self-contained graphics and text
objects (in Java), freed from the intricacies of the PDF file. The second stage
consists of discovering simple graphics entities which we call graphemes, e.g.,
a pair of primitive graphic objects satisfying certain geometric constraints. The
third stage uses machine learning to classify figures using grapheme statistics as
attributes. A boosting-based learner (LogitBoost in the Weka toolkit) was able
to achieve 100% classification accuracy in hold-out-one training/testing using 16
grapheme types extracted from 36 figures from BioMed Central journal research
papers. The approach can readily be adapted to raster graphics recognition.

Keywords: Graphics Recognition, PDF, Graphemes, Vector Graphics, Machine
Learning, Boosting.

1 Introduction

Knowledge mining from documents is advancing on many fronts. These efforts are
focused primarily on text. But figures (diagrams and images) often contain important
information that cannot reasonably be represented by text. This is especially the case
in the Biomedical research literature where figures and figure-related text make up a
surprising 50% of a typical paper. The importance of figures is attested to in the leading
Open Access Biomedical journal, PLoS Biology which furnishes a “Figures view” for
each paper.

The focus of this paper is on figures which are diagrams, rather than raster images
such as photographs. Our group has worked on diagram-related topics for some years,
including work on diagram parsing, spatial data structures, ambiguity, text-diagram in-
terrelations, vectorization of raster forms of diagrams, and summarization. This paper
deals with graphic recognition in the large, describing a system that begins with the elec-
tronic versions of papers and leads to a classifier trained by machine learning methods
that can successfully classify diagrams from the papers. This will then allow knowledge
bases to be built for organized browsing and diagram retrieval. Retrieval will normally
involve related text and should be able to retrieve diagrams from queries that use dia-
gram examples or system-provided exemplars.

W. Liu and J. Lladós (Eds.): GREC 2005, LNCS 3926, pp. 231–242, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

232 M. Shao and R.P. Futrelle

To apply machine learning, we first convert the original electronic format of the
diagram into machine-resident objects with specified geometric parameters. Then we
design algorithms to generate attribute statistics for each diagram that will successfully
characterize a diagram. There are thus three sequential stages in the processing/analysis
chain: Extraction of the figure-related graphics from papers, attribute computation, and
machine learning.

In online papers in PDF format, diagrams may exist in raster or vector format. Most
published diagrams are in raster format. However, BioMed Central (BMC), a leading
Open Access publisher, has to date published about 14,000 papers, of which approxi-
mately 40% contain vector formatted figures. In the preliminary research reported here,
we have used a small number (36) of BMC vector figures. Although this paper focuses
on diagrams available in vector format, the approach is equally applicable to raster for-
mats. They would require an additional preprocessing step, vectorization, a sometimes
imperfect process for deriving a vector representation [1, 2, 3].

It might seem straightforward to extract graphic objects from PDFs, which are al-
ready in vector format. This is not the case. PDF is a page-space, geometry-based lan-
guage with various graphics/text state assignments and shifts that must be untangled.
PDF has no logical structure at any high level, such as explicitly delimited paragraphs,
captions, or figures. Even white space in text is not explicitly represented, other than by
a position shift before the next character is rendered. A small number of studies have
attempted to extract vector information from PDFs, typically deriving an XML repre-
sentation of the original [4]. For our analysis work, we use in-memory Java objects.

The document understanding community has been focused on text, perhaps overly
focused. For example, Dengel [5] in a keynote devoted to “all of the dimensions” of
document understanding, doesn’t even mention figures. Much of the work on graphic
recognition for raster images has been devoted to vectorization of technical drawings
and maps [1]. It rarely goes on to extract structure, much less to apply machine learning
techniques to the results. One piece of research on chart recognition from raster images,
for bar and pie charts, used hand-crafted algorithms for recognition [6].

For vector figures in CAD and PDF, hybrid techniques have been used which ras-
terize the vector figures and then apply well-developed raster-based document analysis
algorithms. This settles the issue of where on the page the various items appear, but the
object identity of the items is lost [7, 4]. Our approach is different, because we render
(install) the object references in a spatial index, a coarse raster-like spatial array of ob-
jects [8, 9, 10]. This combines the best of both worlds; it allows us to efficiently discover
sets of objects that obey specified spatial constraints.

The spatial indexing approach can operate at the level of full document analysis to
locate and separate out graphics on pages irrespective of the placement and order of the
vector commands in the underlying files, be they PDF, SVG, or the result of graphics
recognition (vectorization).

There is some work on vector-based figure recognition. A system was developed
for case-based reasoning that did matching of new diagrams to a CAD database [11].
Graph matching was used in which the graphs had geometrical objects at the nodes and
geometric relations on the arcs.

Recognition and Classification of Figures in PDF Documents 233

For PDFs, a brief but useful description of PDF file structure can be found in [12].
The Xed system converts PDF to XML [4]. This is one of the few papers we could
find that shows the results of extracting geometric state and drawing information from
PDF. Such a result would have to be converted back to in-memory objects, as we do,
before further analyses could be done. We have no requirement for XML in our work,
since Java objects can be serialized to files and visualized using Java 2D. Their paper
describes four similar tools, only one of which, the commercial system, SVG Imprint,
appears to generate geometric output; the other three produce raster output for figures
or entire pages only.

2 Graphics Recognition System for PDF

We accomplish graphics recognition for vector figures in PDF in the three stages as
shown in Fig 1. The first stage consists of extracting the graphic and text primitives cor-
responding to figures. The mapping from PDF to the rendered page can be complex, so
an interpreter was constructed to translate the PDF content into self-contained graphics
and text objects, freed from the intricacies of the PDF file. Our focus is on vector-based
figures and their internal text. Heuristics were used in this study to locate the figure
components on each page. The target form for the extracted entities is Java objects in
memory (or serialized to files). This allows us to elaborate them as necessary and to do
the processing for the next two stages.

The second stage consists of discovering simple graphics entities which we call
graphemes. A grapheme is a small set of graphic primitives satisfying specified geo-
metric constraints [13] and Fig. 4. We can also consider graphemes in a larger sense
as including point statistics such as the number of polygons in a figure, or statistical
distributions such as a histogram of line lengths. A number of different grapheme types
can be defined in order to extract enough information from a diagram to classify it. In
certain cases, graphemes may contain many primitives. Examples include a set of tick
marks on an axis or a set of small triangles used as data point markers in a data graph.
Such large sets are described as obeying generalized equivalence relations [8, 14]. Dis-
covering geometrical relations between objects is aided markedly by a preprocessing
stage in which primitives are rendered (installed) in a spatial index [9, 10].

The third stage uses machine learning to classify figures using grapheme statistics as
descriptive attributes. In this paper we report on supervised learning studies. Statistics
for 16 different grapheme types were collected for 36 diagrams extracted from BioMed
Central papers. The diagrams were manually pre-classified and used for training and
hold-out-one evaluation. A boosting algorithm, LogitBoost from the Weka toolkit [15],
was used for multi-class learning. LogitBoost was able to achieve 100% classification
accuracy in hold-out-one training/testing. Other learning algorithms we tried achieved
less than 100% accuracy. We can’t expect any machine learning algorithm to achieve
100% accuracy in the scaled up work we will do involving tens of thousands of dia-
grams. Nevertheless, the preliminary results are encouraging. Using a large collection
of atomic elements (graphemes) to characterize complex objects (entire diagrams) is
analogous to the “bag of words” approach which has been so successful in text docu-
ment categorization and retrieval. Once trained, the learning system can classify new
diagrams presented to it for which the grapheme statistics have been computed.

234 M. Shao and R.P. Futrelle

Stage 1

Stage 2

Stage 3

Grapheme Discovery based on Spatial Analysis

Machine Learning for Figure Classification

Extraction of PDF Vector entities
and Conversion to Self−Contained Java 2D objects

Fig. 1. Stages of our PDF vector figure recognition system. The first stage consists of extraction
of the PDF vector entities in the file and their conversion to self-contained objects, Java instances
compatible with Java 2D. The second stage involves the discovery of simple items in the figure,
graphemes, a typical one being two or three primitives obeying geometric constraints such as an
arrowhead, or a large set of simply related objects such as a set of identically appearing (congru-
ent) data point markers. The third stage is to use the statistics of various graphemes found in a
figure as a collection of attributes for machine learning.

Combining extraction, grapheme discovery, and machine learning for diagram clas-
sification is a new approach that bodes well for the future.

3 Extraction of Figure-Related PDF Entities

3.1 Features of PDF Documents and Their Graphics

A PDF document is composed of a number of pages and their supporting resources
(Fig. 2). Both pages and resources are numbered objects. Each PDF page contains a
resource dictionary and at least one content stream. The resource dictionary keeps a list
of pairs of a resource object number and a reference name. A resource object may be a
font, graphics state, color space, etc. Once defined, resource objects can be referenced
anywhere in the PDF file.

The content streams define the appearance of PDF documents. They are the most
essential parts of PDF; they use resources to render text and graphics. A content stream
consists of a sequence of instructions for text and graphics. Text instructions include
text rendering instructions and text state instructions. Text rendering instructions write
text on a page. Text state instructions specify how and where text will be rendered to a
page, such as location, transform matrix, word space, text rise, size, color, etc.

Graphics instructions include graphics rendering instructions and graphics state in-
structions. Graphics rendering instructions draw graphics primitives such as line, rect-
angle, and curve. Graphics state instructions specify the width, color, join style, painting
pattern, clipping, transforms, etc. PDF also provides a graphics state stack so that local
graphics states can be pushed or popped to change the graphics state temporarily.

Recognition and Classification of Figures in PDF Documents 235

...

... ...

Graphics States

Color Spaces

Fonts

GS 1 20
GS 2 21

Fonts

Resources Dictionary:

...

Content Stream:

Ft 1 10
Ft 2 11

CS 1 40

...

...

Color Spaces

Graphics States
GS 1 20

CS 2 41
CS z 45

Resources Dictionary

...

Content Stream:

Ft x 18
Ft 2 11

...

... ...

Graphics States Color SpacesFonts

Obj 90 (a Page)

Obj
10

Obj
20

Obj
21

Obj
33

Obj
40

Obj
41

Obj
4511

Obj
18

Obj 80 (a Page)

Pages:

Resources:

Obj

Fig. 2. A simplified PDF structure example. A PDF file is composed of pages and resources such
as font, graphics state, and color space. Both pages and resources are defined as objects with
a sequence number, a UID. In this example, page 1 is object #80, and font 1 is object #10.
These sequence numbers are used as reference numbers when the object is referenced in another
object. In this example, object #10 that defines a font is referenced in a page (object #80)
object’s resource dictionary as “Ft1 10” in which 10 is the font object’s sequence number. Once
the resource objects are defined, they are globally available, i.e., they can be referenced by any
pages in the same PDF file. For instance, object #20 is referenced by two page objects: object
#80 and #90. For a useful brief description of PDF structure, see [12].

3.2 Extraction Strategies

To extract graphics, we first translate PDF documents into a format that we can ma-
nipulate in software. We apply the open source package, Etymon PJX [16], to translate
entire PDF documents into a sequence of Java objects corresponding to PDF objects or
instructions. Etymon PJX defines a class for each member of the set of basic PDF com-
mands. It parses the PDF file to create a sequence of object instances, corresponding to
the commands in the PDF file, including the argument values given to each command.
Thus, for a PDF document, we get Java objects for pages, resources, fonts, graphics
states, content streams, etc. Next, we need to determine which Java objects should be
extracted. These objects should be the graphics and text inside of figures, as opposed to
blocks of text outside the figures proper. The extraction procedure is complicated due

236 M. Shao and R.P. Futrelle

to the structural nature of the PDF content stream, and the lack of a simple mapping
between positions in the PDF file content stream and positions on the page.

The PDF content stream is a sequential list of instructions. The sequence is important
because the sequence of resources (graphics states and text states) defines the local
environment in which the graphics and text are rendered. The values of resources can
be changed in the sequence, affecting only the instructions that follow. This property
makes extraction complicated because to extract either graphics primitives or text inside
graphics with all of their related state parameters, we need to look back through the
instruction sequence to find the last values of all the parameters needed.

Despite the fact that the content stream is sequential, the instruction sequence in the
content stream is not necessarily in accord with their positions on the page. The content
stream instruction sequence and positioning on a page are distinct issues in PDF. A
PDF document may apply different strategies to write content streams, all leading to
the same appearance, though their instructions may be arranged in different orders.
Except in specific cases, we cannot apply content stream position information to aid
extraction. The drawing order does affect occlusion when it occurs, but occlusion was
not a part of this study.

Extraction of Figures. Since some PDF pages only contain pure text or a few simple
figures such as tables, which are not dealt with in this study, we can apply the statistics
of line primitives to eliminate such a page — if a page has only a few line primitives,
then this page does not contain any figure we need to extract. If there are more than a
certain number of non-line primitives such as curves or rectangles, we can conclude that
this page must contain one or more figures. If there are neither curves nor rectangles in
a page, we can still conclude that a PDF page has figures if the count of line primitives
is large enough. A similar strategy was used in our preliminary analyses to determine
which papers in the BMC collection contained vector-based figures.

Once we conclude that the graphics in a PDF page contains figure material, we ex-
tract both graphics rendering instructions and their supporting graphics states. Graphics
states can be specified in either the content stream or in separate objects. Graphics
state instructions in content streams can be easily extracted as normal instructions,
while graphics states in separate objects are extracted using reference and resource
dictionaries.

Extraction of Text Within Figures. After extracting all of the graphics elements in a
figure, the text inside the figures needs to be extracted. As explained in Section 3.1, the
sequence of text and graphics instructions is not necessarily in accord with the sequence
in the rendered page. This makes it difficult to decide which part of text instructions
in content stream renders the text inside of graphics. The PDF articles published by
BioMed Central (BMC) use an Adobe FrameMaker template that results in the PDF
content stream structure shown in Fig. 3.

Once the figures and their text have been extracted, we can create PDFs for viewing
and validation. This is done by using Etymon PJX tools to generate PDF from the
extracted subset of Java objects. This PDF should contain the figures and their text,
nothing more nor less.

Recognition and Classification of Figures in PDF Documents 237

A figure

Headnote

Footnote

Body Text rendering

in this content stream

Graphics rendering

Text (within graphics) rendering

If more than one figure

Fig. 3. The content stream structure of BioMed Central (BMC) PDF pages. The content stream of
all the BMC PDF pages is organized in the following sequence: head-note, footnote, body-text,
graphics instructions (including rendering instructions, graphics state instructions, graphics state
references), and text inside the graphics. Graphics, if any, are rendered at the end of each content
stream, and text inside the graphics follows the graphics rendering instructions. This structure
help us to locate and extract the text inside graphics. The use of this BMC-specific structure is in
no way a limitation on our methods. Spatial indexing can be used to locate the objects forming
the graphics content in a page irrespective of the content stream sequence.

3.3 An Interpreter to Create Self-contained Objects

The results of the extraction step are Java objects of graphics/text drawing instructions,
graphics/text states, etc. This sequence of Java objects exactly mirrors the PDF instruc-
tions in the content stream. PDF rendering instructions usually depend on the local en-
vironment defined by state instructions. Thus, rendering a graphics object requires the
current graphics state and rendering text requires the current font definition. In princi-
ple, the entire preceding content stream must be read to get the state parameters needed
to render graphics or text.

We have implemented an interpreter to translate these interdependent Java objects
into self-contained objects. Each self-contained object, either a graphics primitive or
text, contains a reference to a state object describing its properties. To enhance modu-
larity, multiple self-contained objects may reference the same state object.

In PDF, the graphic state stack is used to temporarily save the local graphics state
so that it will not affect the environment that follows. We deal with this problem by
implementing a stack in our interpreter to simulate the PDF state stack so that the local
graphics state and the pushed prior state(s) are preserved. Then every self-contained
object, no matter how its graphics state is defined, by internal graphics state instructions,
external graphics state objects, or via the graphics state stack, references the correct
state.

Our interpreter reads all extracted objects and translates and integrates them into
self-contained objects that extend Java 2D classes so that they can be manipulated in-
dependently from the PDF specification.

238 M. Shao and R.P. Futrelle

4 Spatial Analysis and Graphemes

Up to this point, we have described the extraction of graphics primitives. The ultimate
utility of the extracted primitives is for the discovery of the complex shapes and con-
structions that they comprise, and beyond that to use them in systems that index and
retrieve figures and present them to users in interactive applications. A thorough anal-
ysis of a figure can involve visual parsing, for example to discover the entire structure
of an x,y data graph with its scale lines and annotations as well as data points and data
lines, and so forth [17, 9]. Here we describe an alternate approach based on graphemes,
which is simple compared to full parsing, but still quite useful. A grapheme is typically
made up of only two primitives; examples are shown in Fig. 4.

Graphemes allow us to classify figures using a variety of machine learning tech-
niques, as we will see in Section 5. Classification, in turn, can enable indexing and
retrieval systems to be built.

A particular grapheme class is described as a tuple of primitives, usually just a pair,
that obey constraints on the individual primitives as well as geometrical constraints that
must hold among them. For example the Vertical Tick tuple in Fig. 4 can be described
as a pair of lines, L1 and L2 that obey the constraints described in Algorithm 4.1.

�

�

�

�

Algorithm 4.1. VERTICAL TICK(L1, L2)

Comment: Check if a pair of lines (L1, L2) construct a Vertical Tick

if

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

short(L1);
vertical(L1);
long(L2);
horizontal(L2);
below(L1, L2);
touch(L1, L2);

then V ertical T ick ← L1, L2
Comment: If L1 is a short vertical line and L2 a long horizontal line, L1 is
below L2, and they touch at one end of L1, then they form a Vertical Tick.

Graphemes such as Vertical Tick can be discovered by simplified versions of the Di-
agram Understanding System developed earlier by one of us [9, 18]. One difficult aspect
of such analyses is exemplified by the predicates short() and long() in Algorithm 4.1.
This is dealt with by a collection of strategies, e.g., line length histogram analyses, or
comparing lengths to the size of the smallest text characters for short().

4.1 Spatial Indexes Aid Grapheme Parsing

The parsing algorithms that define graphemes operate efficiently because a preprocess-
ing step is used to install the primitives in a spatial index, allowing constraints such as
below() and touch() to be evaluated rapidly.

A spatial index is a coarse 2D-array of cells (array elements) isomorphic to the 2D
metric space of a figure [8, 9, 10, 18] . Each graphics primitive is rendered into the spatial
index so that every cell contains references to all graphics primitives that occupy or pass

Recognition and Classification of Figures in PDF Documents 239

BranchBarsAdjacent Rectangles Data Point

A

Vertical Tick Line Segment CurveHorizontal Tick Callout

Fig. 4. Some grapheme examples: Vertical Tick, Horizontal Tick, Line, Curve, Callout, Adjacent
Rectangles, Bars, Branches, and Data Point

through the cell. Each primitivecontains its position in the original PDF drawing sequence
in order to faithfully represent occlusions that can occur accidentally or by design.

The spatial index provides a efficient way to deal with spatial relations among graph-
ics primitives, and enables us to deal with various graphics objects such as lines, curves,
and text in a single uniform representation. For example, the touch() predicate for two
primitives simply checks to see if the intersection of the two sets of cells occupied by
the primitives is non-empty.

5 Machine Learning for Graphics Classification and Recognition

We analyzed vector graphics figures in PDF articles published by BMC, and defined
the following five classes as shown in Fig. 5.

– A data point figure is an x, y data graph showing only data points;
– A line figure is an x, y data graph with data lines (may also have data points);
– A bar chart is an x, y data graph with a number of bars of the same width;
– A curve figure is an x, y data graph with only curves;
– A tree is a hierarchical structure made of some simple graphics such as rectangles

or circles that are connected by arrows or branches.

5.1 Results: Machine Learning of Diagram Classes Using Graphemes

To the extent that distinct classes of figures have different grapheme statistics (counts
for each grapheme type), we can use machine learning techniques to distinguish figure
classes. We have used supervised learning to divide a collection of figures into the five
classes described in Fig. 5.

We extracted figures from PDF versions of articles published by BioMed Central. We
examined 7,000 BMC PDFs and found that about 40% of them contain vector graphics.

240 M. Shao and R.P. Futrelle

Fig. 5. Five figure classes: A: Data graph - points. B: Data graph - lines. C: Bar chart. D: Data
graph - curves. E: Tree/Hierarchy. The figures used were drawn from BMC papers.

This high percentage, compared to other publishers, appears to be because of specific
guidance and encouragement in the BioMed Central instructions for authors.

We extracted vector data from 36 diagrams. A total of 16 different grapheme classes
were used as attributes, all geometrical in nature. The counts of grapheme instances in
particular diagrams varied from 0 to 120, the latter value being the number of data points
in one of the data graph diagrams. Two multi-class learners in the Weka 3, Java-based
workbench were used, the Multilayer Perceptron, and LogitBoost. In hold-out-one test-
ing, the perceptron was 94.2% accurate. Its failure on some cases was not unexpected.
LogitBoost is a member of the new class of boosting algorithms in machine learning and
was able to achieve 100% accuracy on this particular set of 36 diagrams. This excellent
result is a testament both to the power of graphemes as indicators of diagram classes
and to the power of modern boosting methods. In the future, we will extend these results
by analyzing much larger collections of diagrams. As the size and complexity of these
collections increases, the accuracy will most certainly be below 100%.

6 Conclusions

This paper has described the design, implementation, and results for a system that can
extract and analyze figures from PDF documents, and classify them using machine
learning. The system, made up of three analysis stages, was applied to the content of
diagrams from research articles published by BioMed Central.

Stage 1. Extraction of the subset of PDF objects and commands that comprise vector-
based figures in PDF documents. The process required building an interpreter that led to
a sequence of self-contained Java 2D graphic objects mirroring the PDF content stream.

Recognition and Classification of Figures in PDF Documents 241

Stage 2. Graphemes were discovered by analysis of the objects extracted in Stage
1. Graphemes are defined as simple subsets of the graphic objects, typically pairs, with
constraints on element properties and geometric relations among them.

Stage 3. Attribute vectors for multi-class learners were generated using statistics of
grapheme counts for 16 grapheme classes for 36 diagrams, divided into five classes.
The best of these learners, LogitBoost from the Weka 3 workbench, was able to achieve
100% accuracy in hold-out one tests.

6.1 Future Work

Besides purely geometrical graphemes, it will be useful to create attributes based on
various statistical measures in the figures such as histograms of line lengths, orienta-
tions, and widths, as well as statistics on font sizes and styles.

We will include additional classes of vector-based PDF papers that are not created
with the standardized FrameMaker-based structure that BMC papers have. The spatial
indexing techniques we have described will allow us to locate the figures and figure-
related text in such papers irrespective of their position in the PDF content stream se-
quence.

The approach described here has focused on vector-based diagrams. The great ma-
jority of figures published in electronic form are raster based, typically JPEGs. Vec-
torization of these figures [1, 3, 2, 19], even if imperfect, can generate a vector-based
representation of the figure that will allow graphemes to be generated. This in turn will
allow systems to be built that can take advantage of figure classification. Such systems
could, in principle, deal with all published figures, though most successfully when op-
erating on line-drawn schematic figures, that is, diagrams.

Grapheme-based approaches can form a robust foundation for building full-fledged
knowledge-based systems that allow intelligent retrieval of figures based on their infor-
mation content. In practice, indexing and retrieval of figures will be aided by including
figure-related text as a component. We intend to use graphemes as one component of
the new diagram parsing system we are developing, which will substantially extend the
capabilities of our earlier systems [9, 18]. The fully parsed diagrams that result will
allow the construction of more fine-grained knowledge-based systems. These will al-
low user-level applications to be built that include interactions with diagram internals,
linkage between text descriptions and diagram content, and more.

This paper extends our earlier results [10] that also used spatial indexing and ma-
chine learning techniques to classify vector-based diagrams. Our papers on a variety of
aspects of diagram understanding can be found at http://www.ccs.neu.edu/home/futrelle/
papers/diagrams/TwelveDiagramPapersFutrelle1205.html

References

1. Ablameyko, S., Pridmore, T.: Machine interpretation of line drawing images : technical
drawings, maps, and diagrams. Springer (2000)

2. Tombre, K., Tabbone, S.: Vectorization in graphics recognition: To thin or not to thin. In:
Proceedings of 15th International Conference on Pattern Recognition. Volume 2. (2000) 91–
96

242 M. Shao and R.P. Futrelle

3. Lladós, J., Kwon, Y.B., eds.: Graphics Recognition, Recent Advances and Perspectives, 5th
InternationalWorkshop, GREC 2003, Barcelona, Spain, July 30-31, 2003, Revised Selected
Papers. In Lladós, J., Kwon, Y.B., eds.: GREC. Volume 3088 of Lecture Notes in Computer
Science., Springer (2004)

4. Hadjar, K., Rigamonti, M., Lalanne, D., Ingold, R.: Xed: A new tool for extracting hidden
structures from electronic documents. In: First International Workshop on Document Image
Analysis for Libraries (DIAL’04). (2004) 212–224

5. Dengel, A.: Making documents work: Challenges of document understanding. In: Proceed-
ings ICDAR’03, 7nd Int’l Conference on Document Analysis and Recognition, Edinburgh,
Scotland (2003) 1026–1035 Key Note Paper.

6. Huang, W., Tan, C.L., Leow, W.K.: Model-based chart image recognition. In: GREC’03.
(2003) 87–99

7. Chao, H., Fan, J.: Layout and content extraction for PDF documents. In: Document Analysis
Systems (DAS). (2004) 213–224

8. Futrelle, R.P.: Strategies for diagram understanding: Object/spatial data structures, animate
vision, and generalized equivalence. In: 10th ICPR, IEEE Press. (1990) 403–408

9. Futrelle, R.P., Nikolakis, N.: Efficient analysis of complex diagrams using constraint-based
parsing. In: ICDAR’95. (1995) 782–790

10. Futrelle, R.P., Shao, M., Cieslik, C., Grimes, A.E.: Extraction, layout analysis and classifi-
cation of diagrams in PDF documents. In: ICDAR’03. (2003) 1007–1014

11. Luo, Y., Liu, W.: Interactive recognition of graphic objects in engineering drawings. In:
GREC’03. (2003) 128–141

12. Hardy, M., Brailsford, D., Thomas, P.: Creating structured PDF files using xml templates.
In: In Proceedings of the ACM Symposium on Document Engineering (DocEng’04), Mil-
waukee, USA, ACM Press (2004) 99–108

13. Futrelle, R.P.: Ambiguity in visual language theory and its role in diagram parsing. In:
VL’99. (1999) 172–175

14. Futrelle, R.P., Kakadiaris, I.A., Alexander, J., Carriero, C.M., Nikolakis, N., Futrelle, J.M.:
Understanding diagrams in technical documents. IEEE Computer 25 (1992) 75–78

15. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. 2nd
edn. Morgan Kaufmann,San Francisco (2005)

16. Etymon: (Pjx 1.2) http://www.etymon.com/epub.html.
17. Chok, S.S., Marriott, K.: Automatic generation of intelligent diagram editors. ACM Trans.

Comput.-Hum. Interact. 10 (2003) 244–276
18. Futrelle, R.P.: (http://www.ccs.neu.edu/home/futrelle/diagrams/demo-10-98/) The Diagram

Understanding System Demonstration Site.
19. Shao, M., Futrelle, R.P.: Moment-based object models for vectorizaiton. In: IAPR Confer-

ence on Machine Vision Applications (MVA2005). (2005) 471–475

	Introduction
	Graphics Recognition System for PDF
	Extraction of Figure-Related PDF Entities
	Features of PDF Documents and Their Graphics
	Extraction Strategies
	An Interpreter to Create Self-contained Objects

	Spatial Analysis and Graphemes
	Spatial Indexes Aid Grapheme Parsing

	Machine Learning for Graphics Classification and Recognition
	Results: Machine Learning of Diagram Classes Using Graphemes

	Conclusions
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

