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ABSTRACT
“How common is interactive visualization on the web?” “What
is the most popular visualization design?” “How prevalent
are pie charts really?” These questions intimate the role of
interactive visualization in the real (online) world. In this
paper, we present our approach (and findings) to answering
these questions. First, we introduce Beagle, which mines
the web for SVG-based visualizations and automatically clas-
sifies them by type (i.e., bar, pie, etc.). With Beagle, we
extract over 41,000 visualizations across five different tools
and repositories, and classify them with 85% accuracy, across
24 visualization types. Given this visualization collection, we
study usage across tools. We find that most visualizations fall
under four types: bar charts, line charts, scatter charts, and ge-
ographic maps. Though controversial, pie charts are relatively
rare for the visualization tools that were studied. Our findings
also suggest that the total visualization types supported by
a given tool could factor into its ease of use. However this
effect appears to be mitigated by providing a variety of diverse
expert visualization examples to users.

CCS Concepts
•Information systems → Web mining; •Human-centered
computing→ Information visualization;

Author Keywords
web mining; design mining; visualization classification

INTRODUCTION
The Visualization community has made tremendous strides
in the past decade or so in bringing data visualization to the
masses, and recently in creating and sharing visualizations
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online. Tools such as Tableau, D3, Plotly, Exhibit and Fusion
Charts have made the design and publication of interactive
visualizations on the web easier than ever. Popular venues
such as the New York Times, the Guardian, and Scientific
American then utilize these tools as an effort to democratize
data, resulting in unprecedented advances in data journalism,
visual storytelling, and browser-based rendering techniques.

However, while it is generally believed that visualization has
reached the public, it remains unclear just how wide the reach
is. Although the Visualization research community continues
to design and develop new interactive visualization techniques
(particularly for the web), we still have little idea as to how
frequently these techniques are used. For example, many have
advocated for the “death” of pie charts [14, 5, 25], but just
how commonly used are pie charts compared to the recom-
mended alternative, the bar chart? We aim to investigate these
important questions in the context of rendering and publishing
visualizations on the web.

In this paper, we present our approach and findings to these
questions for web-based visualizations. In order to mine and
classify visualizations on the web, we developed Beagle. Bea-
gle is an automated system to extract SVG-based visualiza-
tions rendered in the browser, label them, and make them
available as a query-able data store. Beagle consists of two
major components: a Web Crawler for identifying and ex-
tracting SVG-based visualizations from web pages, and an
Annotator for automatically classifying extracted visualiza-
tions with their corresponding visualization type.

To date, we have used Beagle to extract visualizations from
five different web-based visualization tools and repositories,
totaling over 41,000 visualizations. We evaluate Beagle’s
classification accuracy using our extracted visualization col-
lections. We find that Beagle can correctly classify SVG-based
visualizations with 85% accuracy, in a multi-class classifica-
tion test across 24 visualization types observed on the web.

In an analysis of our visualization collections, we find that the
vast majority of visualizations fall under only four types: bar
charts, line charts, scatter charts, and geographic maps. We
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also find that the most popular visualizations varied across
visualization tools, indicating that some tools may be more
accessible or appealing for certain visualization types. Despite
this variation, bar and line charts clearly dominate usage of
the visualization tools and repositories that we studied.

Except for D3, we only observed 14 or fewer visualization
types for each tool. Further analysis of usage statistics sug-
gests that the total visualization types supported by a given
visualization tool could be linked to a design tradeoff between
flexibility (more types supported) and ease of use (fewer types
supported). However, when extracting the D3 collection, we
found that users often copied established D3 examples as a
starting point for new visualizations, showing promise as a
technique to encourage users to try new visualization types.

Unlike other mediums, such as presentations and reports, we
find that pie charts are relatively rare in the extracted collec-
tions. As such, the controversy surrounding pie charts appears
to be a moot point for the SVG-based, web-driven visualiza-
tions that we studied.

To summarize, we make the following contributions:

• a new technique for classifying SVG objects. When per-
forming five-fold cross validation, our classification tech-
nique provides: 1) 82%-99% classification accuracy within
collections, and 2) 85% accuracy between collections.

• we analyzed the result of mining over 41,000 pages that
contain SVG visualizations, out of roughly 20 million pages
that were visited. We found that SVG-based interactive
visualizations still represent a small number of web pages on
the internet. We present our analysis results in the Section
titled “Discussion: Visualization Usage on the Web”.

FINDING AND EXTRACTING VISUALIZATIONS
In this section, we describe how we used our Web Crawler to
collect thousands of visualizations from the web.

We initially performed a general, unguided crawl from the
web to discover visualizations. However, after crawling 20
million webpages, we only found roughly 10,000 pages with
visualizations, or 0.05%. The majority of these webpages were
user profile pages from stackoverflow.com (and stackexchange
websites), each with a single line chart showing user activity
over time, resulting in thousands of redundant visualizations.

As a result, we sought out specific “islands” of usage on the
web, where users frequently deposit their visualizations at
a single, centralized source website. We performed a broad
search for islands that consistently contained SVG-based vi-
sualizations, investigating sites such as Tableau Public [24],
Many Eyes [26], and bl.ocks.org [2] for D3 examples [3]. Af-
ter filtering out the islands that use raster formats instead of
SVG, five islands were successfully mined using our Web
Crawler: bl.ocks.org, Plotly [16], Chartblocks [4], Fusion
Charts [13], and the Graphiq knowledge base [9].

For each URL from the visualization islands, the Web Crawler
identifies any SVG objects on the corresponding webpage, and
extracts the raw SVG specification for each object, as well as
a snapshot of the object.

Web Crawler Results
Using the urls collected from our targeted web search, we ran
the Web Crawler to visit the corresponding webpages to extract
SVG objects. We label the resulting collections by their cor-
responding visualization tool or repository name (D3, Plotly,
Chartblocks, Fusion Charts, and Graphiq). Given that our
islands are websites dedicated to a specific tool or repository,
each url collected from our islands was likely to produce SVG-
based visualizations, allowing us to quickly collect thousands
of visualizations per run. The crawls resulted in over 42,000
total SVG-based visualizations. Per island, we found: over
2000 visualizations for D3, 15000 visualizations for Plotly,
22000 visualizations for Chartblocks, 500 visualizations for
Fusion Charts, and over 2500 visualizations for Graphiq.

Challenges
Here, we discuss specific challenges in extracting SVG visual-
izations that influence the data collected by the Web Crawler.

Website Differences: We found significant differences in the
interfaces provided by each website to explore visualizations,
which made these sites challenging to crawl. For example,
the bl.ocks.org website had a keyword search interface, where
relevant visualizations were returned based on search results.
The Plotly website had a single exploration page that revealed
more visualizations as one scrolled down the page. In contrast,
the Chartblocks website was more straightforward in structure,
providing a complete list of the available visualizations.

Time Sensitive Crawls: As found with other web crawling
projects, such as the Common Crawl 1, our web crawls repre-
sent a specific point in time for the websites that were visited.
For a more comprehensive view of each website, including the
evolution of visualization tools over time (e.g., capturing visu-
alizations made with the most recent version of D3), multiple
crawls would need to be executed.

Focus on SVG: Visualizations on the web can appear in many
different file formats: PNG, JPEG, GIF, SVG, HTML canvas,
etc. Currently, our results will only provide insight into the use
of SVG-based visualizations on the web. As opposed to static
visualizations in JPG, GIF, etc., SVG-based visualizations are
often interactive, which more accurately reflect the trajectory
of InfoVis designs. However, we recognize that a compre-
hensive analysis of all visualizations on the web can also be
useful. We plan to extend our analysis to bitmap images and
other file formats in the future, to broaden this analysis.

AUTOMATICALLY LABELING VISUALIZATIONS
Labeling visualizations by type helps us gain a sense for how
different visualization types are designed and shared on the
web. Given that the Web Crawler can extract thousands of
visualizations, an automated process is needed to efficiently
label visualizations. In this section, we explain how the Beagle
Annotator uses a new SVG-based classifier to automatically
classify extracted visualizations by type.

The Annotator calculates basic statistics over SVG elements
to discern visualization types. Examples of some statistics
are: the average x position of SVG elements (e.g., rect’s,
1http://commoncrawl.org/
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circles, etc.), average width of SVG elements, and count of
unique colors observed. Each basic statistic represents a single
classification feature.

The features are then passed to an off-the-shelf classifier
(Python’s Scikit-Learn [15]) to determine visualization types.

We initially tested four classifier types: Multinomial Naive
Bayes, Gaussian Naive Bayes, decision tree, and support vec-
tor machine (SVM). Default Scikit-Learn parameters were
used for all classifiers. We did not observe a significant differ-
ence in performance amongst the highest performing classi-
fiers (decision tree, SVM, and Multinomial Naive Bayes). We
used decision trees as a starting point, for ease of interpretation
of the resulting models. To take overfitting into account, we
use a Scikit-Learn random forest classifier, an ensemble learn-
ing technique that trains multiple decision trees (see Section
“Accuracy Results for Labeling Visualizations” for details).

Our feature extraction code computes statistics over the posi-
tions, sizes, and basic styles for SVG elements (114 features
total). These features cannot be individually covered here due
to space constraints. Instead, we summarize the groups of
features we extract, and provide intuition for why they were
selected. Features belong to one of three groups: general (6
features), stye (19 features), and per-element (89 features).
General features measure the occurrence of element types in
a visualization. Style features track how fill, border, and font
styles are applied for all elements in the visualization, regard-
less of element type. Per-element features track the positions,
sizes, and styles of five element types: circle (16), rect
(20), line (15), path (35), and text (3). For the rest of this
section, we explain how we calculate each feature group.

General features
The intuition behind the general features is to summarize the
prevalence of certain elements within each visualization. This
may be an early indicator for certain visualization types. For
example, heavy use of circles may indicate a scatter or bubble
chart. These features consist mainly of counts for the five
SVG element types. For each SVG object (i.e., each extracted
visualization), we count the instances of each element type.

We also count the number of horizontal and vertical axis lines,
to differentiate visualizations that often contain axes (e.g., bar
charts), from ones that do not (e.g., geographic maps).

Style features
Differences in visualization types can be found in the way that
SVG elements are styled. For example, how they are colored,
and given border and line thicknesses. Styling is often treated
as orthogonal to the layout of elements in the DOM tree, so
we analyze styling using separate features.

Counting the unique colors observed can be useful, because
many visualizations have color applied in a systematic way
(e.g., all bars in a bar chart are one color). We count the number
of unique fill and border colors as two separate features. We
also consider the maximum and minimum stroke widths, as
well as maximum and minimum font size. Given that text can
vary widely in font size, such as for word clouds, we calculate
the number of unique font sizes, and font size variance.

Note that we also take into account the inheritance of styles
through parent objects and embedded CSS style properties.
Per-Element features
We analyze each SVG element type to further differentiate
visualization designs. For example, rect elements with the
same y position might indicate a bar chart, whereas circles
with identical radii might indicate a scatterplot. Note that all
features are normalized: x positions are divided by visualiza-
tion width, y positions by visualization height, all line and
path lengths by visualization diagonal, and all shape widths
by either width or height (whichever is larger).

Features extracted for all elements: For all element types, we
calculate a standard set of statistics. First, we calculate the
maximum, minimum, variance, and total unique x positions,
and then repeat for y position. We then calculate the average
number of elements that share positions, and the total unique
CSS class names. Tracking x and y positions allows us to
identify layout patterns. For example, vertical bar charts have
rectangles with identical y position, and periodic x positions.
In contrast, scatter charts have circles with many unique x and
y positions, helping to discern bar charts from scatter charts.

Circle Features: We calculate the maximum, minimum, and
variance in the radii. We also consider the maximum number
of circles with identical radii. Radii variance helps to discern
visualizations with equal-size circles (e.g., scatter charts), from
those with varying circle sizes (e.g., bubble and radial charts).

Rect Features: We calculate: the maximum, minimum, and
variance in rect widths; the maximum number of rects with
identical width; and the number of unique widths observed.
We repeat these calculations for rect heights. Similar to po-
sitioning, tracking widths and heights helps to identify size
patterns, such as equal-width or equal-height bars in bar charts.

Path Features: We mainly consider the total characters used
to specify a path. To do this, we analyze the “d” attribute,
which contains commands for drawing the path (e.g., move
to point A, draw a line to point B, etc.). We calculate the
maximum, minimum, mean and variance in the length of the
“d” attribute. This feature is useful for paths, because the
longer a “d” attribute is, the more detailed it is. Complex
shapes require detailed paths, such as countries in geographic
maps. We also calculate the Euclidean distance between a
path’s start and end points, to help discern short paths (e.g.,
parallel coordinates) from long paths (e.g., line charts).

However, path elements are complex, and can be used in place
of other SVG elements, requiring some additional statistics.
To find polygon-heavy visualizations (e.g., voronoi visualiza-
tions), we compute the above statistics specifically for paths
that contain polygons (i.e., paths that start and end in the same
place). We also compute the number of arc calls within a path
element, which can help to identify circles in path elements.

Line Features: For lines, we calculate the maximum, mini-
mum, and variance in line length.

ACCURACY RESULTS FOR LABELING VISUALIZATIONS
One of Beagle’s important features is its ability to automati-
cally label visualizations. As such, it is necessary to measure
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Collection Size Total Types Visualization Type Labels

D3 1247 22

area (32), bar (154), box (11), bubble (70), chord (34), donut (31), heatmap (32),
geographic map (379), graph (60), hexabin (21), line (157), radial (13), pie (7),
sankey (11), scatter (118), treemap (10),voronoi (25),waffle (12),word cloud (6),
sunburst (28), stream graph (13), parallel coordinates (23)

Chartblocks 22730 4 pie (5514), line (8065), bar (7402), scatter (1749)

Fusion Charts 530 10 area (14), bar (224), box (22), donut (54), geographic map (48), heatmap (12),
line (84), pie (26), scatter (29), sunburst (6)

Graphiq 2727 11 bubble (9), donut (18), area (210), graph (5), geographic map (244), line (655),
waffle (4), box (6), bar (1542), treemap (6), scatter (28)

Plotly 6544 11 area (10), bar (1364), box (259), contour (118), donut (193), filled-line (126),
geographic map (184), line (1198), pie (26), radial (17), scatter (3049)

Table 1. General information about each visualization collection in our evaluation.

Beagle’s accuracy, to ensure that people can rely on the classifi-
cation labels. In this section, we evaluate Beagle’s SVG-based
classifier in two ways. First we perform a “within-group” eval-
uation where we trained and evaluated the classifier using
the five visualization collections extracted by the Beagle Web
Crawler. Second, we conduct a “between-group” evaluation
where we randomly mixed visualizations from the different
collections and evaluated the accuracy of the classifier.

Within-Group Evaluation
We use all five of our visualization collections for our valida-
tion experiments. Table 1 provides a summary of these details
for each visualization collection. Each collection was created
by mining the corresponding website using the Beagle Web
Crawler (see Section 2 for more details). The collections range
in size from 530 visualizations (Fusion Charts), up to 23,270
visualizations (Chartblocks), and from 4 visualization types in
one collection (Chartblocks) to 22 types (D3).

Note that for our analyses, we omit roughly one quarter of the
visualizations extracted by the Web Crawler. This is because
the corresponding webpages contained complex features that
interfered with the extraction process, such as animations. The
total visualizations used in each experiment is recorded in
column 2 of Table 1.

Dataset Labels
We apply classification labels to every visualization used in
our analyses (i.e., the visualization type). We considered the
visualization types that appeared in all of our data collections,
and created a superset of labels to cover them. Only visualiza-
tion types with too few samples (e.g., only one example) were
omitted from the list. The final set of labels is provided in
Table 1, along with the number of samples observed for each
visualization type and each data collection.

The superset of labels was created in three steps: 1) the usage
documentation (and visualization gallery, if available) was
reviewed for each website to form an initial set of labels; then
2) each set of labels was compared against the visualizations
in the corresponding collection to identify missing labels from
the initial set; and 3) the resulting label sets were consolidated
into the final superset (e.g., bar chart labels from the collec-
tions are consolidated into a single “bar” label in the superset,
line charts into a single “line” label, etc.).

Visualizations were then labeled by the authors either by hand
(for bl.ocks.org/D3, Fusion Charts, and Graphiq) or through
code (for Plotly and Chartblocks) using the final superset. To
extract visualization labels through code, the structure of each
website was inspected for indicators of visualization type. The
Plotly website has a separate webpage for each visualization,
with visualization types contained in the title of each page.
Similarly, the main page of the Chartblocks website contained
links to all of its visualizations, organized by visualization type.
However, the other three websites lacked useful metadata for
automatic labeling, and had to be labeled by hand. In general,
we observed a lack of consistent metadata across websites,
making this form of automatic labeling of limited use.

We found strong similarities between certain visualization
types within the following two groups, and consolidated each
group: geographic maps (e.g., choropleth and map projec-
tions), and graphs and trees (e.g., dendrograms and trees). We
also grouped visualization types with style variations (e.g.,
stacked and grouped bar charts were consolidated).

A small fraction of visualizations in the D3, Fusion Charts,
and Graphiq collections had a mixed design, where more than
one visualization type could apply. In these cases, we assigned
each visualization a primary visualization type, and added
secondary labels as necessary. Note that all classifiers are
trained and tested on the primary labels only.
Experimental Setup and Results
We used the Scikit-Learn RandomForestClassifier for our
experiments. We set the number of decision trees to 14
(n_estimators=14). The default values were used for all
other input parameters.

We calculate the overall accuracy as the fraction of correct
answers across ten runs of stratified, five-fold cross validation
(i.e., weighted accuracy column in Table 2). We also calculate
the average accuracy across all classes, giving each class equal
weight (i.e., non-weighted accuracy column in Table 2). With
five-fold cross-validation, each dataset is shuffled and parti-
tioned into five groups (or folds). For each fold, the classifier
is trained on the other four folds (or 80% of the data), and
tested on the fold that is left out (20% of the data). With some
classes being quite small, we chose fewer folds in our cross
validation in an effort to better balance the ratio of testing and
training samples. Each 5-fold evaluation was run 10 times,
and the results were averaged across all 10 runs.
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Accuracy F1 Score
Non-Weighted Weighted Non-Weighted Weighted

D3 0.7155 0.8193 0.7473 0.8149
Plotly 0.9159 0.9721 0.9290 0.9717
Chartblocks 0.9955 0.9955 0.9955 0.9955
Fusion Charts 0.8753 0.9258 0.9020 0.9253
Graphiq 0.9726 0.9873 0.9799 0.9873
Mixture 0.7817 0.8527 0.7899 0.8503
Mixture (Revision) 0.6025 0.7952 0.6261 0.7892
Mixture + Non-Vis (binary) 0.9411 0.9270 0.9467

Table 2. Weighted and non-weighted (i.e., equal class weight) multi-class classification accuracy (between 0 and 1) and F1 score (between 0 and 1)
for individual collections, and for combining the collections (Mixture, Mixture + Non-Vis). Each set was evaluated using 5-fold cross-validation (80%
training set size, 20% test set size per fold). Note that the “Mixture + Non-Vis” experiment shows binary classification results.

The goal of these experiments is to test Beagle’s ability to
accurately label visualizations across a variety of rendering
environments. Here, we have five separate visualization col-
lections, represented by the visualization tools used to create
the visualizations (D3, Plotly, Chartblocks, Fusion Charts, and
Graphiq). The results of our experiments are provided in Ta-
ble 2. We see that in all five cases, Beagle provides 81.9%
classification accuracy or higher. In four of five cases, Beagle
provides 92%-99% accuracy. Through these results, we con-
firm that Beagle is able to capture the defining characteristics
of different visualization types across collections, simply by
calculating basic statistics over the SVG objects.

Between-Group Evaluation
In the previous section, we found that the Beagle Annotator
achieves high classification accuracy for visualizations ren-
dered using a particular tool (i.e., classification within groups).
However, on the web, Beagle has to contend with a mixture of
SVG objects, where some may have been created by different
tools, and others may not even be visualizations (e.g., logos).
Thus, it is important to also test Beagle’s performance when
faced with a mix of different SVG outputs. To test this, we
formed a new collection by randomly selecting 500 visual-
izations from each visualization collection. All visualization
types for each collection are represented in the samples. We
performed 10 runs of five-fold cross validation on the mixture
of 2500 visualizations, and found that Beagle provides 85.2%
classification accuracy (labeled as “Mixture” in Table 2). Non-
weighted (0.7899) and weighted (0.8503) F1 scores are also
high, reinforcing Beagle’s high performance.

To test how Beagle discerns between visualizations and
other non-visualization SVG objects, we added 1,000 non-
visualizations to the mixture (3,500 total SVG objects). We
trained a binary classifier using Beagle’s features, and found
that Beagle provides 92.7% classification accuracy (F1 score
0.9467). (labeled as “Mixture + Non-Vis” in Table 2).

We found that Beagle is comparable to the reported perfor-
mance of related classification techniques, such as those used
in Revision [21] (80-90% accuracy), FigureSeer [23] (86%
accuracy), and ChartSense [10] (76.7-91.3% accuracy). How-
ever, an advantage of Beagle is its ability to classify different
visualization types with a limited number of training examples.
Computer vision and deep learning techniques generally re-
quire large training sets to develop their classification models,

which may not be possible when building a new visualization
collection from scratch.

Nevertheless, to provide a direct comparison, we also ran the
Revision2 classifier with our mixed visualization collection
(79.5% accuracy), and found that Beagle provides a 5.7%
improvement in classification accuracy, with similar improve-
ments to weighted F1 score. We also found that Beagle pro-
vides significantly better results across all classes, with an 18%
improvement to non-weighted classification accuracy, and sim-
ilar improvements to non-weighted F1 score. Note that for
each visualization extracted by the Beagle Web Crawler, we
collected both the SVG output and a snapshot of the visu-
alization. Thus we had an accurate image representation of
the visualization from its original environment, to ensure that
Revision had a competitive point of comparison with Beagle.

DISCUSSION: VISUALIZATION USAGE ON THE WEB
In this section, we highlight interesting insights from our ex-
tracted collections. Note that these results are specific to the
SVG visualizations analyzed, and may not translate across
other output formats, such as Excel files or raster image files.

Supporting Fewer Visualization Types is Common
Here, we discuss our observations in the diversity versus usage
of visualization types. For some collections, we observed
more visualization types than are represented in our evaluation
(i.e., Table 1). For example, we observed exactly one waffle
chart from our crawl of the Fusion Charts website. The total
observed visualization types are provided in Table 1. Except
for D3, the other visualization collections have limited variety
in visualization types. Furthermore, we find that aside from
a small set of visualization types, most have few examples
from users. When analyzing these more obscure visualization
types across the collections, we find that they generally: 1)
illustrate complex relationships between data groups (e.g.,
graphs, sunbursts, treemaps, and arc diagrams); or 2) have
more popular (and often simpler) equivalents, such as waffle
charts and word clouds, which could be replaced by bar charts.
These findings suggest that when more complex visualization
types are supported, there may still be challenges to overcome
in getting general lay-users to try them out.

2Note that Revision requires bitmap images as input.
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Collection All Types Observed Most Popular 2nd Most Popular % Bar % Line % Pie
Chartblocks 4 line, 34.7% Bar, 31.8% 31.8% 34.7% 23.2%
D3 25 Map, 30.4% Line, 12.6% 12.3% 12.6% 0.6%
Fusion Charts 14 Bar, 42.3% Line, 15.8% 42.3% 15.8% 4.9%
Graphiq 12 Bar, 56.5% Line, 24.0% 56.5% 24.0% 0%
Plotly 11 Scatter, 46.6% Bar, 20.8% 20.8% 18.3% 0.4%

Table 3. Relevant totals for visualization types across the visualization collections (raw data for columns 3-7 available in Table 1).

Line and Bar Charts Dominate the Collections
We see in Table 3 that the most popular visualization type
varies across visualization collections, with a steep drop in
usage between the most popular and second most popular vi-
sualization types. We found geographic maps, line charts, bar
charts, and scatter charts to be the most popular types across
the visualization collections. Together, these four visualization
types represent a large fraction of the visualization collections:
64.8% for D3, 72.6% for Fusion Charts, 88.6% for Plotly, and
90.5% for Graphiq. Furthermore, line and bar charts are al-
ways within the top 3 most popular visualization types across
all collections (usage reported in columns 5 and 6 of Table 3).

As such, it seems that the vast majority of the time, simple
visualization types are a suitable solution for helping online
users to make sense of their data. Our findings thus far may
suggest a design tradeoff between flexibility (e.g., D3) and
ease of use (e.g., Chartblocks), and thus a need for a spectrum
of tools targeting different visualization needs and expertise.

However, having easy-access examples that are well docu-
mented, such as the D3.js visualization gallery and tutorials
pages, could encourage users to experiment with new visu-
alization types. Throughout the course of our crawl of the
bl.ocks.org website (and subsequent analysis), we did find that
many visualizations created by users were very similar to the
available D3 examples.

Pie Charts Have Limited Usage in the Collections
Interestingly, though pie charts are generally considered to be
a well-known and relatively simple visualization type, they
represent only a small fraction of the visualizations that we
observed in the collections. For four of the five visualization
tools and repositories that we studied, pie charts represent
less than 5% of the visualizations we observed. The only
exception was for Chartblocks, where only four visualization
types are observed (line, bar, scatter, and pie). In this case,
pie charts are 23.2% of the collection. However, even in the
case of Chartblocks, we find that line charts are 34.7% of
the collection (12% higher than pie charts), and bar charts
are 31.8% of the collection (8.6% higher than pie charts).
It is unclear whether this stems from existing visualization
conventions (e.g., [14, 5, 25]), or other factors, such as the
design or presentation of the visualization tools themselves.

Dataset Limitations and Future Work
We see Beagle as a useful starting point for exploring visual-
ization usage on the web. However, there are limitations to
what analyses are possible with our dataset. Here, we outline
four aspects of the dataset we aim to extend in the future.

More websites: Five different websites have been crawled
using Beagle, but there are certainly more than five websites
dedicated to creating and sharing visualizations online. We
plan to continue our data collection process, to provide a
broader context for analyzing online usage of visualization
tools. We also encourage others to extend the dataset with
more examples as a community effort in the future.

More metadata: As shown in our analysis, it can be help-
ful to know more information beyond only the visualization
type, such as the specific tool that was used to create the vi-
sualization (e.g., D3 versus Chartblocks), and any available
examples of tool usage (e.g., the D3 image gallery). We plan to
extend Beagle to capture more supplemental data, such as doc-
umentation and other information about the visualization tools
themselves (e.g., the code repository for the tool), and when
possible, the raw data used as input for the visualizations.

More complex design analysis: currently, our analysis em-
phasizes only the types of visualizations created on the web.
In the future, we plan to extend the project to analyze more
complex interaction designs, such as cross filtering across
coordinated views.

RELATED WORK
Our goal is to better understand how different tools are utilized
to create and share visualizations on the web. In pursuit of this
goal, we developed visualization extraction and classification
techniques to harvest a collection of visualizations for analysis.
In this section, we highlight related projects in these areas.

Beagle was inspired by existing projects to mine and ana-
lyze website designs, such as Webzeitgeist [11] and D.Tour
[19]. Some projects within the visualization community also
incorporate web mining and visualization extraction, but for
different goals. For example, Harper and Agrawala extract
data from D3 visualizations to re-style visualizations [6], as
well as to generate visualization templates [7]. Saleh et al.
extract infographics from Flickr to develop and evaluate tech-
niques for similarity-based search of infographics [20].

Beagle also extends existing work in visualization classi-
fication [22, 21, 18, 8, 23, 12, 10]. Most projects focus on
classifying raster images of charts [21, 18, 8, 23, 12, 10].
Prasad et al. [18] and Savva et al. [21] apply computer vision
techniques to extract features from raster images for classifica-
tion. Huang and Tan [8] extract graphical marks from raster
images, and use them to classify visualizations. Jung et al. [10]
and Siegel et al. [23] apply deep learning techniques to clas-
sify raster visualizations. Poco and Heer revisit the approach
of raster image classification from a new perspective by ex-
tracting visualization specifications from images [17], instead
of visualization types. Shao and Futrelle [22] analyze vector
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images from PDF’s to classify images across five visualiza-
tion types. Beagle calculates basic statistics over SVG as
classification features. Beagle’s classification features apply
to any SVG image, and can accurately classify thousands of
visualizations, and as many as 24 different visualization types.

Surprisingly, though many techniques have been proposed to
classify visualization images, few projects move beyond the
extraction and classification phase to perform broader studies
of visualization usage, particularly on the web. Here, we high-
light two relevant projects. Benson and Karger study usage
of the Exhibit tool for publishing data online [1], and also
find that authors’ design decisions are influenced by available
design examples. In a related area, Lee et al. developed a
platform for extracting and analyzing visualizations from sci-
entific papers [12], and find that papers with higher densities
of images tend to have higher research impact (visualizations
comprise 35% of these images). In contrast, we find that only a
small fraction of webpages contain SVG-based visualizations.

CONCLUSION
In this paper, we presented Beagle, an automated system for
collecting, labeling and analyzing visualizations created on
the web. Beagle supports a flexible design with two stand-
alone components. The Web Crawler extracts SVG-based
visualizations from webpages, and was able to extract over
41,000 visualizations from the web. The Annotator uses SVG-
focused classification techniques to label visualizations, and
achieves 86% classification accuracy, in a multi-class classi-
fication test with 24 different visualization types. We then
use the resulting visualization collection to study usage of the
different visualization types across tools. We found that only
a small fraction of webpages (0.05%) contain SVG visualiza-
tions created using browser-based tools. Furthermore, the vast
majority of visualizations in the collection are covered by just
four visualization types: bar charts, line charts, scatter charts,
and geographic maps. And though they are hotly debated in
the visualization community, pie charts are somewhat rare for
the particular visualization tools that we studied. Our findings
indicate that in addition to tools that provide flexibility (e.g.,
D3), users may also benefit from visualization tools that facili-
tate fast ease of use by focusing on supporting a small set of
visualization types.
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