6626070
2997924

MATH02, Integral calculus

Back to the previous page
List of posts to read before reading this article


Contents


Indefinite integral

Single-variable function

INPUT

import sympy
#symypy.init_printing()
from sympy import symbols, Function, integrate

x = symbols("x")
f = Function("f")(x)

integrate(f)

OUTPUT : \(\displaystyle \int f{\left(x \right)}\, dx\)



Explicit function

import sympy
#symypy.init_printing()
from sympy import symbols, sin, integrate

x = symbols("x")

integrate(sin(x))

OUTPUT : \(\displaystyle - \cos{\left(x \right)}\)



Fail to evaluate an integral, Representing the formal integral

import sympy
#symypy.init_printing()
from sympy import symbols, sin, ,cos, integrate

x = symbols("x")

integrate(sin(x * cos(x)))

OUTPUT : \(\displaystyle \int \sin{\left(x \cos{\left(x \right)} \right)}\, dx\)



Symbolically represent an integral

import sympy
#symypy.init_printing()
from sympy import symbols, Integral

x = symbols("x")

Integral(x)

OUTPUT : \(\displaystyle \int x\, dx\)



Evalutation for an integral

import sympy
#symypy.init_printing()
from sympy import symbols, Integral

x = symbols("x")

i = Integral(x)
i.doit()

OUTPUT : \(\displaystyle \frac{x^{2}}{2}\)



Integral of a multivariable expression

import sympy
#symypy.init_printing()
from sympy import symbols, integrate

x, y = symbols("x, y")
expr = (x + y)**2

integrate(expr, x, y)

OUTPUT : \(\displaystyle \frac{x^{3} y}{3} + \frac{x^{2} y^{2}}{2} + \frac{x y^{3}}{3}\)



Definite integral

Single-variable function

import sympy
#symypy.init_printing()
from sympy import symbols, Function, integrate

a, b, x = symbols("a, b, x")
f = Function("f")(x)

integrate(f, (x, a, b))

OUTPUT : \(\displaystyle \int\limits_{a}^{b} f{\left(x \right)}\, dx\)



Explicit function

import sympy
#symypy.init_printing()
from sympy import symbols, sin, integrate

a, b, x = symbols("a, b, x")

integrate(sin(x), (x, a, b))

OUTPUT : \(\displaystyle \cos{\left(a \right)} - \cos{\left(b \right)}\)



Infinity

import sympy
#symypy.init_printing()
from sympy import symbols, exp, integrate, oo

x = symbols("x")

integrate(exp(-x**2), (x, 0, oo))

OUTPUT : \(\displaystyle \frac{\sqrt{\pi}}{2}\)



Fail to evaluate an integral, Representing the formal integral

import sympy
#symypy.init_printing()
from sympy import symbols, sin, cos, integrate, oo

a, b, x = symbols("a, b, x")

integrate(sin(x * cos(x)),(x,a,b))

OUTPUT : \(\displaystyle \int\limits_{a}^{b} \sin{\left(x \cos{\left(x \right)} \right)}\, dx\)



Symbolically represent an integral

import sympy
#symypy.init_printing()
from sympy import symbols, Integral

a, b, x = symbols("a, b, x")

Integral(x, (x, a, b))

OUTPUT : \(\displaystyle \int\limits_{a}^{b} x\, dx\)



Evalutation for an integral

import sympy
#symypy.init_printing()
from sympy import symbols, Integral

a, b, x = symbols("a, b, x")

i = Integral(x, (x, a, b))
i.doit()

OUTPUT : \(\displaystyle - \frac{a^{2}}{2} + \frac{b^{2}}{2}\)



Integral of a multivariable expression

import sympy
#symypy.init_printing()
from sympy import symbols, integrate

x, y = symbols("x, y")
expr = (x + y)**2

integrate(expr, (x, 0, 1), (y, 0, 1))

OUTPUT : \(\displaystyle \frac{7}{6}\)



List of posts followed by this article


Reference